Cypress Semiconductor Perform CY7C1413BV18 Specification Sheet

Download Manual  of Cypress Semiconductor Perform CY7C1411BV18 Computer Hardware for Free or View it Online on All-Guides.com. This version of Cypress Semiconductor Perform CY7C1411BV18 Manual compatible with such list of devices, as: Perform CY7C1411BV18, Perform CY7C1413BV18, Perform CY7C1415BV18, Perform CY7C1426BV18

Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 1
1
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 2
2
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 3
3
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 4
4
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 5
5
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 6
6
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 7
7
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 8
8
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 9
9
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 10
10
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 11
11
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 12
12
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 13
13
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 14
14
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 15
15
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 16
16
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 17
17
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 18
18
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 19
19
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 20
20
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 21
21
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 22
22
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 23
23
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 24
24
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 25
25
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 26
26
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 27
27
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 28
28
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 29
29
Cypress Semiconductor Perform CY7C1411BV18 Manual  - Page 30
30
36-Mbit QDR™-II SRAM 4-Word
Burst Architecture
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Cypress Semiconductor Corporation 198 Champion Court San Jose, CA 95134-1709 408-943-2600
Document Number: 001-07037 Rev. *D Revised June 16, 2008
Features
Separate independent read and write data ports
Supports concurrent transactions
300 MHz clock for high bandwidth
4-word burst for reducing address bus frequency
Double Data Rate (DDR) interfaces on both read and write ports
(data transferred at 600 MHz) at 300 MHz
Two input clocks (K and K) for precise DDR timing
SRAM uses rising edges only
Two input clocks for output data (C and C) to minimize clock
skew and flight time mismatches
Echo clocks (CQ and CQ) simplify data capture in high-speed
systems
Single multiplexed address input bus latches address inputs
for both read and write ports
Separate port selects for depth expansion
Synchronous internally self-timed writes
QDR-II operates with 1.5 cycle read latency when DLL is
enabled
Operates as a QDR-I device with 1 cycle read latency in DLL
off mode
Available in x 8, x 9, x 18, and x 36 configurations
Full data coherency, providing most current data
Core V
DD
= 1.8 (±0.1V); IO V
DDQ
= 1.4V to V
DD
Available in 165-Ball FBGA package (15 x 17 x 1.4 mm)
Offered in both Pb-free and non Pb-free packages
Variable drive HSTL output buffers
JTAG 1149.1 compatible test access port
Delay Lock Loop (DLL) for accurate data placement
Configurations
CY7C1411BV18 – 4M x 8
CY7C1426BV18 – 4M x 9
CY7C1413BV18 – 2M x 18
CY7C1415BV18 – 1M x 36
Functional Description
The CY7C1411BV18, CY7C1426BV18, CY7C1413BV18, and
CY7C1415BV18 are 1.8V Synchronous Pipelined SRAMs,
equipped with QDR™-II architecture. QDR-II architecture
consists of two separate ports to access the memory array. The
read port has dedicated data outputs to support the read opera-
tions and the write port has dedicated data inputs to support the
write operations. QDR-II architecture has separate data inputs
and data outputs to completely eliminate the need to
“turn-around” the data bus required with common IO devices.
Access to each port is through a common address bus.
Addresses for read and write addresses are latched on alternate
rising edges of the input (K) clock. Accesses to the QDR-II read
and write ports are completely independent of one another. To
maximize data throughput, read and write ports are equipped
with DDR interfaces. Each address location is associated with
four 8-bit words (CY7C1411BV18), 9-bit words
(CY7C1426BV18), 18-bit words (CY7C1413BV18), or 36-bit
words (CY7C1415BV18) that burst sequentially into or out of the
device. Because data can be transferred into and out of the
device on every rising edge of both input clocks (K and K
and C
and C
), memory bandwidth is maximized while simplifying
system design by eliminating bus “turn-arounds.”
Depth expansion is accomplished with port selects, which
enables each port to operate independently.
All synchronous inputs pass through input registers controlled by
the K or K
input clocks. All data outputs pass through output
registers controlled by the C or C
(or K or K in a single clock
domain) input clocks. Writes are conducted with on chip
synchronous self-timed write circuitry.
Selection Guide
Description 300 MHz 278 MHz 250 MHz 200 MHz 167 MHz Unit
Maximum Operating Frequency 300 278 250 200 167 MHz
Maximum Operating Current x8 885 815 745 620 535 mA
x9 900 830 760 620 535
x18 940 865 790 655 565
x36 1040 950 870 715 615
[+] Feedback